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Abstract

This paper describes how one can use the spectral vanishing viscosity method pro�
posed by Tadmor in multidomain solution of hyperbolic systems� Interface conditions are
derived using a variational approach� and open boundary conditions are derived using the
approach used in ��� for incomplete parabolic systems�

� Introduction

Filtering of the solution is a very common technique when using spectral methods on problems
with solutions of limited regularity� The main reason for using �ltering is to prevent the
buildup of large components of high spatial frequency� and hence to stabilize the solution�
There are many variants of �ltering described in the literature� see e�g� ��� for techniques to
handle discontinuities� and ��� for a general overview� We will here concentrate on problems
where we don	t have to deal explicitly with shocks or discontinuities� but where we �lter to
stabilize the smooth solution�

We consider a quasi
linear hyperbolic system

ut �
dX

i��

Ai�u� x� t uxi � b�u� x� t� u� b � Rm� Ai � R
m�m� ��

Chebyshev spectral collocation will be used to discretize the PDE system at least in one
direction� and we consider the solution of �� in multiple subdomains� i�e� the domain is given
by � �

Sn
i���i� The interfaces between the subdomains are denoted by �ij and the outer

boundaries by ��i �which may be empty� We will therefore have to �nd interface conditions at
�ij for the the numerical method to work properly� In addition we want open or transparent
boundary conditions� since we are interested in wave
like solutions where our boundary is just
an arti�cial one� Open boundary conditions for hyperbolic systems are described in many
works� but here we consider the method using characteristic variables described in e�g� ����
����� and ����

We will use the spectral viscosity method for Chebyshev discretizations proposed by Tad

mor� ����� and discussed in detail in ���� Other �ltering or arti�cial viscosity methods are
described in ����

The rest of the paper is organized as follows� In section � we describe the spectral viscosity
in detail and interface conditions are derived using a variational technique� Section � is
devoted to the derivation of open boundary conditions�
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� Spectral viscosity and interface conditions

Spectral viscosity or more precisely� spectral vanishing viscosity was introduced by Tadmor
in the Fourier case in ����� and he showed that this method converged to the entropy solution
of a system of conservation laws� The spectral viscosity �SV method is a spectral �lter
which acts only on frequencies higher than a certain threshold� and hence should leave the
low frequency �smooth components intact�
For the Chebyshev case� Tadmor have suggested the following family of SV �lters� see ����
and �����

�N
w�xp

�

�x

�
RN �

uNx
w�xq

�
� ��

where �N is the �viscosity� coe�cient� w�x � �� � x���� the Chebyshev weight� p� q � Z�
The �ltering function is de�ned as�

RN �
uNx

w�xq
�

X
mN�l�N

�Rl
�blTl�x ��

where �Rl are �lter coe�cients and �bl are the Chebyshev coe�cients of the weighted �rst
derivative ��w�xquNx � The parameters suggested by Tadmor are�

�N � N��� mN � N���� �Rk � ��

�
mN

k

��
� k � mN �

The parameters p and q were set to � and � respectively in the numerical experiments re

ported in ����� because one wanted to keep the hyperbolic boundary and interface conditions�
These values have also been chosen in larger experiments� see e�g� ���� If we don	t impose
the restriction of using the hyperbolic boundary and interface conditions� but rather derive
boundary conditions based on the PDE system with the viscosity term� we are free to choose
values for p and q� The simplest choice is to set both to zero� such that it resembles the
Fourier variant�

Consider now the PDE system �� with the SV term added�

ut �
dX

i��

Aiuxi � �
dX

i��

P �ii� �

w�xp
�Ri � uxixi � b ��

where we have assumed that the matrix P �ii� is diagonal� and that � represents a small
parameter� Note that the SV method is de�ned in discrete form� and here we assume the
existence of operators Ri for which RNi is the discrete approximation�

To derive the interface conditions� we will use the variational method applied in ��� for
incomplete parabolic systems� In order to perform this we have to freeze the coe�cients at
the interface� i�e� to linearize locally around the solution and the position� For ��� this
implies that the matrices Ai will be constant� Let ��� � denote the L� inner product within a
domain� and denote by 	 �� � � the L� inner product on the boundary� For su�ciently smooth
functions� we will use the following Green	s formulas�

�Aiuxi � v � �Aiu� vxi � hAiu� v nii ��a�X
i

�R � uxixi � v

�
�

�X
i

�R � uxi� vxi

�
� h

X
i

�Ri � uxi� vi ��b

�



We will use an antisymmetric term for the �rst derivative terms� and from the Green	s formula�
we have immediately that�

�Aiuxi � v �
�

�
��Aiuxi � v� �Aiu� vxi� �

�

�
hAiu� v nii

Hence we can write the PDE system for p � q � � in variational form�

�ut� v �
�

�

X
i

��Aiuxi � v� �Aiu� vxi� � �
X
i

P �ii� ��Ri � uxi� vxi

�

�
h
X
i

Aiu� v nii� �
X
i

P �ii�h�Ri � uxi� vi� �b� v ��

For p � � we get a similar result� but now the boundary term for the SV vanishes because of
the form of the weight function� Since this will not give us other interface conditions than in
the hyperbolic case� we concentrate on the case p � � from now on�
If we introduce bilinear forms�

a�u� v �
�

�

X
i

��Aiuxi � v� �Aiu� vxi�

s�u� v �

�X
i

�Ri � uxi� vxi

�

we can write the variational form�

�ut� v � a�u� v � s�u� v � hEu� vi� �b� v ��

where

E u �
X
i

�
�P �ii��Ri � uxi �

�

�
Aiu

�

We now proceed exactly as done in ��� and introduce two subdomains �� and �� and bilinear
forms a� and so on de�ned over the respective subdomain� We have that�

a�u� v � a��u� v � a��u� v

s�u� v � s��u� v � s��u� v

So by writing the equation �� for �� and ��� we can add these equations and subtract ���
We then obtain

hE u� vi�� � hE u� vi�� � � ��

where the superscripts indicate the subdomains to which the quantity belongs� If we assume
that the test function v is compactly supported in �� then the boundary inner products
reduces to that of the interface� The transmission conditions are�

�E u� � �E u� ��a

u� � u� ��b

where the superscripts ��� and �
� refers to the values of the quantity taken in �� and ��

respectively� So in particular if �� and �� are half
spaces with the x�
axis as the interface�
we obtain the following conditions�

�P �����R�
� � u�x� � �P �����R�� � u�x� ���a

u� � u� ���b

�



Note that the explicit dependence on Ai disappears because we have to assume that this
matrix is non
singular� Alternatively� we can of course use the condition Aiu

� � Aiu
��

or TAiu
� � TAiu

� where T is the left eigenvector matrix of Ai� The latter condition
expresses that the characteristic variables should be continuous at the interface� Hence for
each component of u� we have apart from the continuity of the variable itself� a relation of
the form�

���R�
� � u�x� � ���R�� � u�x� ���

where u now denotes one component� If we now take the discrete version of these conditions
and use the de�nition �� of the SV �lter�

��
X

mN�
�l�N�

�R�
l
�b�l Tl�x � ��

X
mN

�
�l�N�

�R�l
�b�l Tl�x� ���

we see that if the number of gridpoints in the two domains are equal� and therefore the pa

rameters in the SV method� the conditions reduces to require that the Chebyshev coe�cients
in the two subdomains should be equal for mN � l � N � In the much more interesting case
where the number of grid points are not equal� we see from the de�nition that the coe�cients
of the expansion of the �ltered values must be matched� In particular� So for the case where
N� � N�� and hence mN�

� mN� � we have the conditions�

�� �R�l
�b�l � �� mN� � l � mN�

���a

�� �R�
l
�b�l � �� �R�l

�b�l � mN�
� l � N� ���b

�� �R�
l
�b�l � �� N� � l � N� ���c

These conditions are quite di�erent from the interface conditions in ���� and the reason is that
spectral viscosity is de�ned in spectral space� and hence we get matching conditions on the
Chebyshev spectra in each domain�

It is fairly obvious that these conditions can be generalized to work for an interface of
arbitrary �but smooth shape�

� Boundary conditions

Again we consider the PDE system �� with p � ��

ut �
dX

i��

Aiuxi � �
dX

i��

P �ii� �Ri � uxixi � b ���

We are now interested in imposing correct boundary conditions on �i� We know from numer

ical experiments� see e�g� ��� and ����� that indirect imposition of the boundary conditions
seems to work well� This procedure goes as follows� Assume that we have a viscous term of
the form

�

�x

�
�
�u

�x

�

and a boundary condition of the form



�u

�n
� �u � �

�



where 
� �� � � R� At the boundary we now solve for �u
�n in the boundary condition and

insert this expression in the viscous term� Then we perform the second di�erentiation� These
modi�ed second derivatives are only computed at the boundary� elsewhere we compute the
term as usual� If our viscous term is of the SV type� we can use the same procedure� but
slightly modi�ed� We solve for the derivative in the boundary condition as before� but now
we expand the result � a linear function of u in Chebyshev series and �lter these coe�cients
before performing the second di�erentiation�

The situation is di�erent if we want open or transparent boundary conditions since it is
not always possible to express such conditions as mixed type of boundary conditions� It is
well known that the ideal open boundary conditions are global both in time and space� and
therefore local approximations have to be made� There are many methods suggested for a
Navier
Stokes type of equations� but here we will use the theory developed in ���� Applications
of this theory and discussion of the discrete case is given in ����� The starting point for the
derivation of the open boundary conditions in ��� are the interface conditions between two
subdomains� The theory relies on the fact that the linearized incomplete parabolic systems
has solutions of the normal mode type�

�u �
r�pX
i��

ie
�ix��i�

For the explanation of the symbols� see ���� If one will use this theory also for the SV case�
we have to show that such solutions also exist for this case�

��� The advection�di�usion equation

In order to gain some insight into the existence of normal mode solutions for our type of SV
equation� consider an advection equation with SV in �D�

vt � cvx � �
�

�x
�R � vx ���

in the half
space �� � ����� If we perform a Laplace transform in t and assume zero initial
conditions we get

s�v � c�vx � �
�

�x
�R � �vx �

Now inserting a solution e�x� we get after canceling the common e�x
term�

s � c� � ��� �R�� ���

where �R�� is the Laplace transform of the �ltering function R� This means that we can solve
��� for � �at least in principle� and then �nd a normal mode for our PDE� The equation
��� is the same as the basic equation ��� ������ and hence we have for the general case that

Q��� i� � A�� �
dX

j��

Aj i�j � �P ������ �R����
dX

j��

�P �jj��� �Rj�i� ���

To allow for di�erent �ltering parameters for the individual equations� we let �R��� �
diag� �R����� � � � � �R�n��� and similarly for the other coordinate directions�

�



If we now go back to ���� we see that we should have an explicit expression for �R��� and
we have not speci�ed the operator itself yet� only indicated that it should be so constructed
that the discrete �ltering operator RN is a good approximation to it� If we consider R as a
distribution we know that R � � will give the usual advection
di�usion equation� because we
have that � � vx � vx and L � � � �L denotes the Laplace transform of a distribution� Open
boundary conditions for the advection
di�usion equation are derived in �����

We can express the �ltering distribution in terms of a type of summability kernels used
in harmonic analysis� see e�g� ����� An example of such a kernel is the De la Vall ee Poussin
kernel

V� � �K�� �K�

where K� is the F ejer kernel� see again ����� The Fourier transform of the De la Vall ee Poussin
kernel is shown in �gure �� We see that a possible �ltering operation may be expressed as

λ 2λ

1

ξ

V λ

Figure �� Fourier transform of the De la Vall ee Poussin kernel

R�vx � vx�V��vx for a suitable � hence the �ltering distribution can be written R � ��V��
We are seeking the Laplace transform of this distribution� and that is di�erent from the Fourier
representation since we have the relation

L �f�x � F �f�x e��x� � � � � i��

where � is the variable in Fourier space� We will not be using the De la Vall ee Poussin kernel�
but a kernel with Fourier transform matching the form of the spectral viscosity� Let V �� be
the Laplace transform of such a kernel� Then we can write ���

s� c� � ��� ��� V �� � ���

The distribution V �� should then tend to zero as j�j 	 �� An interesting kernel is the
function of Riesz
mean type discussed in ��� p����� In Fourier space it is given by

K�� �

�
�� j�j� � � �

� � � �

Note that the Riesz
mean kernel does not have the same Fourier representation as the SV
method calls for� but the characteristics are very similar� We will see below that there are
analytical results available for the Riesz
mean� which give us insight into how the �ltering
a�ects the construction of the open boundary conditions� If � 	 a 	 b the following kernel
has the wanted properties�

Vab�� � 
K

�
�

b

�
� �
� �K

�
�

a

�
� 
 �

b�

b� � a�

�



1

ξ

V

ba

ab

Figure �� Fourier representation of the kernel Vab

The Fourier representation of this function is given in �gure �� The inverse transform of K��
is also given in ����

F
���K�� � x����J����x�

hence
F
��Vab � 
 b����J����bx� �
� � a����J����ax

that goes asO�x�� as x	�� Hence it is a well
behaved function� The Laplace transform
of F���K�� is possible to calculate and it is expressed as a hypergeometric function�

L

�
x����J�����x

�
�

����

�����
�
	
�

�
�
F

�
�

�
! �!

�

�
!�

��

��

�
�

The hypergeometric function is the expression

F

�
�

�
! �!

�

�
!�

��

��

�
�

�X
m�


� � �

��m� ���m� �

�
�
��

��

�m

It is easy to see that the transform behaves like O���� as � 	 �� hence have the wanted
behavior�

The Laplace transform of the �ltering distribution can now be written

V �� � �� C�
�

�
� C�

�

��
� O���	 ���

for j�j su�ciently large� and where C�� C� � R� To simplify further� we may assume j�j so
large that the C�

�� 
term can be ignored� and we are left with the C�
� 
 term� The constant C�

is easily calculated from the expression for the Laplace transform�

C� �
�

�����
�
	
�

� �
b� �
� �a �
�

�����
�
	
�

� a� � ab� b�

a� b

So the �characteristic� equation ��� now becomes

s� c� � ���
�
��

C�

�

�
���

�



Consider now a kernel that has a Fourier representation that corresponds to the SV method�
Let

K �� �

�
� � � � � a
a�

�� � � a
���

We want to compute the inverse Fourier transform for this distribution�

F
���K  �

Z a



ei�tdt �

Z
�

a
ei�t

a�

��
dt�

The �rst integral� denoted by I�� is elementary�

I� �
�

it
�eiat � � ���

The second integral is more di�cult� but the inverse transform of Pf �
�� is known� Furthermore�

the following relation holds�

F
���Pf

�

��
 � F

�������
�

��
 �F �����

�

��
�

where ���� is the unit step function� The last term can be computed by using the result in
��� p������

F �����
�

��
 � a

���

 t� a

���
��t ln�t� i�

where a
���

 � i� a

���
�� � i�� � ����� i	� � Using the expression for Pf �

��
in ���� p������ we have

the wanted inverse transform�

I� �
t

�
� ���t t� a

���

 t� a

���
��t ln�t � i� ���

We will now compute the Laplace transform of I� and I�� and again we are only interested in
the asymptotic properties of these transforms� We have

L �I� � i log
�

� � ia

but expanding I� in power series we get the asymptotic result�

L �I� �
a

�
�
a�

��
� O���� ���

The Laplace transform of I� has the following asymptotic expansion�

L �I� �
C

��
�O����� C � R ���

Hence by assuming that j�j is su�ciently large� we may include only the ���
term� and this
gives the same �characteristic equation as ���� but where the constant C� is now substituted
by a�

The open boundary condition comes from the transmission condition where we have in

serted the normal mode solution in the outer domain�

R � �vx � �� �R��v� ���

�



cfr� ��� Thm������ with �R�� � � � V ��� The exact form of the boundary condition now
depends on the behavior of V �� as �	 � for the obtained values of ��

Let us �rst consider the case where all V �� can be ignored� i�e� j�j is su�ciently large
for this to be satis�ed within the required accuracy for the open boundary conditions� Then
��� reduces to the ordinary advection
di�usion equation�

s � c� � ���

which has roots�

c

�
�

s

c
� O��� and �

s

c
� �

�
s�

c�

�
�� O���

This gives the following �rst order open boundary conditions�

��R � vx � �� on out"ow ���a

��R � vx � c v� on in"ow ���b

The second order �and time
dependent conditions are�

��R � vx � �
�

c
vt� on out"ow ���a

��R � vx � c v �
�

c
vt� on in"ow ���b

These conditions make sense since for R � � they are identical to the conditions for the
advection
di�usion equation obtained in ����� The interpretation of the conditions in the
discrete case is via the Chebyshev expansion both sides of the equations� So for the �rst
order conditions� the interpretation is as follows�

out�ow �

� � l � mN � bl unchanged

mN 	 l � N � �Rlbl � �

in�ow �

� � l � mN � al � �

mN 	 l � N � �Rlbl � c al

where al are the Chebyshev coe�cients for the unknown u�
Similar interpretations are valid for the second order conditions� An alternative is to use
indirect imposition of the boundary conditions� i�e� substitute for ��R � vx at the boundary
before performing the second di�erentiation in the viscous term�

Now consider the equation ��� again� and this has the following roots expanded in �
series�

c

�
�
s

c
� C� �O��� and �

s

c
� �

�
s�

c�
�
sC�

c�

�
�O���

�



With C� � a � mN � ����� we have that �� �R�� � �� � ���� � O��� hence with the roots
above this becomes�

c�
s

c
��O������ and �

s

c
��

s

c�
���� � O���

This gives the following open boundary conditions� For the out"ow case we get the same
conditions as above� but now the terms omitted are O������ For the in"ow case we also get
the same conditions because the terms of order ���� in �� �R�� cancel�

If we include the second order term in the Laplace transform� we get the same �rst root�
but the �
term in the second root� which does not in"uence the boundary condition� now
becomes

s�

c�
� a

s

c�
�

a�

c
�

If we include the third order term in the Laplace transform� and not the second order
term� we get an entirely similar result� The �
term of the second root becomes�

s�

c�
� C�

s

c�
�

C�

s
�

We see that in this case we obtain an integro
di�erential relation� which is not local�

��� The incomplete parabolic system

We now return to the incomplete parabolic system� From the above results for the advection

di�usion equation we may infer that the conditions to be used here are the same as the ones
derived in e�g� ����� but where the left hand side of the conditions now are of the form�

��R � ui
x�

However� this has to be justi�ed �at least partially because the theory developed in ��� is based
upon certain assumptions which we now have to check� We will therefore follow the derivation
in ��� in broad terms� In the following we will assume that the �ltering function �R�� will
have the form ��V �� for all the variables� Moreover� the matrices P �jj� in the SV
term will
be assumed to be diagonal� The latter assumption should not cause problems for the systems
we will consider below� We will consider the problem in the half
space �� � fx � x� 	 �g
bounded by the boundary � � fx � x� � �g� The half
space �� � fx � x� � �g then
represents th outer domain�

The �rst point to check is if the normal modes � have the same behavior as stated in ���
Thm����� as � 	 �� In essence� r values should tend to in�nity and n values should have a
�nite limit� The proof in ��� can be used almost as it stands� but we have to check that			�P ������ �R��� sI

			 � �

has r roots with negative real part and r roots with positive real part� Using the assumption
that the matrix P ���� is diagonal and positive de�nite� and that �R�� has the required form�
we can easily �nd that the theorem holds�

Now we can assume a solution in the outer domain of the normal mode type�

�u �
r�pX
i��

ie
�ix��i�

��



This solution will be used to derive the open boundary condition in the �rst form� We start
with the transmission condition

R � �P �����ux � R � �P ����i�u�x ���

and compute �u�x and R � �u�x � We get

R � �u�x �
r�pX
i��

i�i �R��ie
�ix��i

and hence the transmission condition is

R � �P �����ux � �P ����
r�pX
i��

i�i �R��i�
i�

Now using the derivation in the proof of ��� Thm������ we obtain an equivalent result�

Lemma � The open boundary condition at � for the half�space �� is�

R � �P �����ux � �P ����
r�pX
i��

r�pX
j��

�i �R��iM
��
ij �uj�

i ���

We have used the same notation as in ��� and ����� From the assumptions we have

��i �R��i � ��i � ���� �O���

The next step depends on the asymptotic properties of �� It is relatively straightforward to
show using the proof of ��� Thm����� that we have the following expressions�

�j �

�

� O����� � � j � m

�
� �


����

� O�� m 	 j � r � p
� ���

where the quantities 
 and �are found as in ���� and where chi is found from another gen

eralized eigenproblem which we don	t give here because it will not be used in the following�
Hence we see that the asymptotic properties of ��i �R��i are the same as in ���� but now we
have terms of order ���� in both expressions� So we can now construct boundary conditions
of half orders�

By performing the limiting process� we obtain a parallel to the conditions ��� �����a�
�����b��

R � P �����ux � P ����
r�pX

i�m��

r�pX
i��

�iN
��
ij �uj#

i ���a

�uk �
r�pX
i��

r�pX
i��

N��
ij �uj#

i
k � r � p� � � k � n ���b

where now

�i �

�
�i � �i�

��� �O�� m� � � i � r� p
s
�i

� O����� � � i � m

hence the �rst order conditions are the same as those obtained in e�g� ����� whereas the second
order conditions are now in fact conditions of order ��� �

��



��� Applications to the Euler equations for an atmosphere

In this section we will be applying the results obtained above to the Euler equations used
to simulate gravity waves in the atmosphere� for the physics see e�g� ���� The governing
equations are as follows�

�
du

dt
� rp� �g� F ���a

dp

dt
� �pr � u � � ���b

��

�t
�r � ��u � � ���c

Here u is the velocity vector� � is the density� p is the pressure� g is the acceleration of gravity�
and � is the ratio of speci�c heats� The open boundary conditions for this system of PDEs
is given e�g� in ���� The open boundary conditions for the incomplete parabolic system for
this PDE system is not given explicitly in the literature� but we can easily infer what the
conditions are from the results for a closely related system� namely the equations for nonlinear
acoustic propagation in sea water� given in �����

we include a SV
term in these PDE system and assume that P ���� � diag��� �� �� ���� ��
and also that the �ltering function �using the parameters mN and N is the same for all
variables� Hence the pressure equation can have a di�erent amount of damping from the
momentum equations� It is straightforward to extend the results to the case where P ���� can
have arbitrary positive elements�

Since the �rst order conditions are identical to the ones obtained for the usual incomplete
parabolic system except that the left hand side is the �ltered derivative� we can write down
the results directly from the formulas given in ����� Consider �rst the right interface and the
in"ow case� We then get�

R � �
�$u

�x
�

��
����a� �u� ��

����a$u� $p ���a

R � �
�$v

�x
� �u$v ���b

R � �
� $w

�x
� �u $w ���c

R � �
�$p

�x
�

����� � �u

��a� �u� ��
����a$u� $p ���d

Here the hatted quantities are the frozen coe�cients used in the derivation of the characteristic
variables� $u and so on represents the variables with homogeneous initial conditions� a is the
sound speed� and

�� �
�

��

�
�u�� � ��

q
���a� � �u� � �u��� � ��

�
�

In the in"ow case there is also a hyperbolic part which is an old friend�

��
p

�a�
� �
 �

p

�a�

���

where the quantities with the zero subscript refers to the values exterior to the domain�

��



For the out"ow case we don	t have any hyperbolic part of the boundary conditions� and the
parabolic part� again from the results in ���� is�

R � �
�$u

�x
�

��
����a� �u� ��

����a$u� $p ���a

R � �
�$v

�x
� � ���b

R � �
� $w

�x
� � ���c

R � �
�$p

�x
�

����� � �u

��a� �u� ��
����a$u� $p ���d

We see that these conditions contains the outgoing fast characteristic for the hyperbolic part
of the system� so that the conditions reduce to specifying the incoming characteristics in the
�	 � limit�
For the left boundary we have a di�erent incoming characteristic which will enter in the
expression� Again form ���� we get for the in"ow case�

R � �
�$u

�x
�

��
����a� �u� ��

����a$u� $p ���a

R � �
�$v

�x
� �u$v ���b

R � �
� $w

�x
� �u $w ���c

R � �
�$p

�x
�

����� � �u

��a� �u� ��
����a$u� $p ���d

We also have a hyperbolic part of the boundary conditions and this identical to ����
For the out"ow case we get in a similar way

R � �
�$u

�x
�

��
����a� �u� ��

����a$u� $p ���a

R � �
�$v

�x
� � ���b

R � �
� $w

�x
� � ���c

R � �
�$p

�x
�

����� � �u

��a� �u� ��
����a$u� $p ���d

and there is no hyperbolic part here
The interpretation of these conditions in the discrete case is again via the Chebyshev coe�

cients� exactly as shown for the advection
di�usion case� The practical implementation can be
done in several ways� and in ���� the numerical experiments show that the indirect imposition
method works best� This procedure can of course also be applied here� but then the direct
correspondence between the Chebyshev coe�cients is somewhat hidden�

Note that for frequencies �and �
values below the �ltering threshold� we have a hyperbolic
system with its corresponding open boundary conditions� In practice that means that we
have to impose both types of boundary conditions� those belonging to the hyperbolic system�
and viscous ones like those derived above�

��
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